What is a $\text{Wave}$? 🌀
A **$\text{Wave}$** is a disturbance that $\text{transfers}$ $\text{energy}$ from one point to another without transferring $\text{matter}$. All waves require a **$\text{Medium}$** (the substance the wave travels through) except $\text{Electromagnetic}$ $\text{Waves}$ ($\text{light}$).
1. $\text{Transverse}$ $\text{Waves}$
The $\text{medium}$ $\text{moves}$ $\text{perpendicular}$ ($\mathbf{\perp}$) to the direction the $\text{energy}$ $\text{travels}$.
$\text{Examples}: \text{Water}$ $\text{waves}$, $\text{Light}$ ($\text{Electromagnetic}$ $\text{waves}$).
2. $\text{Longitudinal}$ $\text{Waves}$
The $\text{medium}$ $\text{moves}$ $\text{parallel}$ ($\mathbf{\parallel}$) to the direction the $\text{energy}$ $\text{travels}$.
$\text{Examples}: \text{Sound}$ $\text{waves}$, $\text{P}$-$\text{waves}$ ($\text{Seismic}$).
Key $\text{Wave}$ $\text{Properties}$ and $\text{The}$ $\text{Wave}$ $\text{Equation}$ 📏
$\text{Amplitude}$ ($\text{A}$)
The maximum $\text{displacement}$ from the $\text{rest}$ $\text{position}$ ($\text{related}$ $\text{to}$ $\text{energy}$). $\text{Units}: \text{meters}$ ($\text{m}$).
$\text{Wavelength}$ ($\lambda$)
The distance between two consecutive identical points on a wave ($\text{e.g.,}$ $\text{crest}$ $\text{to}$ $\text{crest}$). $\text{Units}: \text{meters}$ ($\text{m}$).
$\text{Frequency}$ ($f$)
The number of $\text{waves}$ that $\text{pass}$ a $\text{fixed}$ $\text{point}$ per $\text{second}$. $\text{Units}: \text{Hertz}$ ($\text{Hz}$ or $\text{s}^{-1}$).
The $\text{Universal}$ $\text{Wave}$ $\text{Equation}$
The $\text{speed}$ ($\vec{v}$) of any wave is determined by its $\text{frequency}$ ($f$) and $\text{wavelength}$ ($\lambda$).
$$\vec{v} = f \lambda$$Sound $\text{Waves}$: $\text{Pitch}$ and $\text{Loudness}$ 🎶
$\text{Sound}$ is a $\text{longitudinal}$ $\text{wave}$ created by $\text{vibrations}$ that travel through a $\text{medium}$.
$\text{Pitch}$
Our perception of a sound's $\text{frequency}$.
$\text{High}$ $\text{Frequency}$ $\longleftrightarrow$ $\text{High}$ $\text{Pitch}$
$\text{Loudness}$
Our perception of a sound's $\text{intensity}$ ($\text{energy}$), which is related to its $\text{Amplitude}$.
$\text{Large}$ $\text{Amplitude}$ $\longleftrightarrow$ $\text{Loud}$ $\text{Sound}$
$\text{Speed}$ $\text{of}$ $\text{Sound}$
The speed of sound depends only on the $\text{medium}$ ($\text{material}$ $\text{and}$ $\text{temperature}$). It travels $\text{fastest}$ in $\text{solids}$ and $\text{slowest}$ in $\text{gases}$.
Interactive $\text{Wave}$ $\text{Calculation}$ ($\vec{v} = f\lambda$) 🧮
Use the $\text{Universal}$ $\text{Wave}$ $\text{Equation}$ to calculate $\text{Wavelength}$.
Problem:
A $\text{sound}$ $\text{wave}$ travels at $340 \text{ m}/\text{s}$ and has a $\text{frequency}$ of $680 \text{ Hz}$. What is its $\text{wavelength}$ ($\lambda$)?
$$\text{Calculation}: \lambda = \frac{\vec{v}}{f} = \frac{340 \text{ m}/\text{s}}{680 \text{ Hz}} = ? \text{ m}$$
⚡ $\text{Wave}$ $\text{Concept}$ $\text{Check}$!
Identify the wave property or type best described by the scenario.
Reset Your Score
If you want to play again, you can reset your score here.