Heat $\text{vs.}$ $\text{Temperature}$ 🌡️
**$\text{Thermodynamics}$** is the branch of $\text{physics}$ that deals with $\text{heat}$ and its relation to $\text{work}$ and $\text{energy}$.
$\text{Heat}$ ($Q$)
**$\text{Energy}$ $\text{in}$ $\text{transit}$** ($\text{flow}$) due to a $\text{temperature}$ $\text{difference}$. Heat always $\text{flows}$ from $\text{hot}$ to $\text{cold}$.
$\text{Unit}$: $\text{Joule}$ ($\text{J}$).
$\text{Temperature}$ ($T$)
A measure of the **$\text{average}$ $\text{kinetic}$ $\text{energy}$** of the $\text{molecules}$ in a substance.
$\text{Unit}$: $\text{Kelvin}$ ($\text{K}$) or $\text{Celsius}$ ($^{\circ}\text{C}$).
$\text{Internal}$ $\text{Energy}$ ($U$)
The $\text{total}$ $\text{energy}$ contained within a $\text{thermodynamic}$ $\text{system}$. $\text{Related}$ to both $\text{potential}$ $\text{and}$ $\text{kinetic}$ $\text{energy}$ of the $\text{molecules}$.
The $\text{Laws}$ $\text{of}$ $\text{Thermodynamics}$ 🛑
$\text{Zeroth}$ $\text{Law}$ ($\text{Equilibrium}$)
If two $\text{systems}$ are each in $\text{thermal}$ $\text{equilibrium}$ with a third $\text{system}$, then they are in $\text{thermal}$ $\text{equilibrium}$ with each $\text{other}$.
$\text{Key}$: Defines $\text{temperature}$ and ensures $\text{thermometers}$ work.
$\text{First}$ $\text{Law}$ ($\text{Conservation}$ $\text{of}$ $\text{Energy}$)
The $\text{change}$ in $\text{internal}$ $\text{energy}$ ($\Delta U$) of a $\text{system}$ is $\text{equal}$ to the $\text{heat}$ $\text{added}$ to the $\text{system}$ ($Q$) $\text{minus}$ the $\text{work}$ $\text{done}$ by the $\text{system}$ ($W$).
$$\Delta U = Q - W$$$\text{Second}$ $\text{Law}$ ($\text{Entropy}$)
The $\text{total}$ $\text{entropy}$ (disorder/randomness) of an $\text{isolated}$ $\text{system}$ can $\text{only}$ $\text{increase}$ over $\text{time}$.
$\text{Key}$: $\text{Heat}$ $\text{cannot}$ $\text{spontaneously}$ $\text{flow}$ from $\text{cold}$ to $\text{hot}$.
Specific $\text{Heat}$ $\text{Capacity}$ 🧊
**$\text{Specific}$ $\text{Heat}$ $\text{Capacity}$ ($c$)** is the amount of $\text{heat}$ $\text{energy}$ required to $\text{raise}$ the $\text{temperature}$ of $\mathbf{1 \text{ kg}}$ of a $\text{substance}$ by $\mathbf{1 \text{ K}}$ (or $\mathbf{1^{\circ}\text{C}}$).
$\text{Specific}$ $\text{Heat}$ $\text{Equation}$
The heat energy ($Q$) required for a temperature change ($\Delta T$) is calculated by:
$$Q = mc\Delta T$$where $m$ is $\text{mass}$ ($\text{kg}$), $c$ is $\text{specific}$ $\text{heat}$ $\text{capacity}$ ($\text{J}/(\text{kg}\cdot\text{K})$), and $\Delta T$ is the $\text{change}$ in $\text{temperature}$ ($\text{K}$ or $^{\circ}\text{C}$).
Interactive $\text{Specific}$ $\text{Heat}$ $\text{Calculation}$ 🧮
Use the $\text{Specific}$ $\text{Heat}$ $\text{Equation}$ ($Q=mc\Delta T$) to calculate $\text{Heat}$ $\text{Energy}$.
Problem:
How much $\text{heat}$ $\text{energy}$ ($Q$) is needed to $\text{raise}$ the $\text{temperature}$ of $2.0 \text{ kg}$ of $\text{water}$ by $10^{\circ}\text{C}$?
($\text{Specific}$ $\text{heat}$ of $\text{water}$ is $\mathbf{4180 \text{ J}/(\text{kg}\cdot^{\circ}\text{C})}$)
$$\text{Calculation}: Q = (2.0 \text{ kg}) \times (4180 \text{ J}/(\text{kg}\cdot^{\circ}\text{C})) \times (10^{\circ}\text{C}) = ? \text{ J}$$
⚡ $\text{Thermodynamics}$ $\text{Law}$ $\text{Check}$!
Identify which of the $\text{Laws}$ best explains the following scenario.
Reset Your Score
If you want to play again, you can reset your score here.