$\text{Electric}$ $\text{Charge}$ $\text{and}$ $\text{Current}$ 🔋
$\text{Electricity}$ is the study of $\text{electric}$ $\text{charge}$ ($q$) and its $\text{movement}$.
$\text{Charge}$ ($q$)
A $\text{fundamental}$ $\text{property}$ of matter. $\text{Units}$: $\text{Coulomb}$ ($\text{C}$).
Like $\text{charges}$ $\text{repel}$, opposite $\text{charges}$ $\text{attract}$.
$\text{Voltage}$ ($\text{V}$)
$\text{Electric}$ $\text{Potential}$ $\text{Difference}$. The $\text{energy}$ per $\text{unit}$ $\text{charge}$. $\text{Units}$: $\text{Volt}$ ($\text{V}$ or $\text{J}/\text{C}$).
$\text{Current}$ ($\text{I}$)
The $\text{rate}$ of $\text{flow}$ of $\text{charge}$. $\text{Units}$: $\text{Ampere}$ ($\text{A}$).
$$\text{I} = \frac{q}{t}$$Circuits: $\text{Ohm's}$ $\text{Law}$ $\text{and}$ $\text{Power}$ 🔌
**$\text{Ohm's}$ $\text{Law}$** describes the relationship between $\text{Voltage}$ ($\text{V}$), $\text{Current}$ ($\text{I}$), and $\text{Resistance}$ ($\text{R}$).
$\text{Resistance}$ ($\text{R}$)
The $\text{opposition}$ to the $\text{flow}$ of $\text{charge}$. $\text{Units}$: $\text{Ohm}$ ($\Omega$).
$\text{Ohm's}$ $\text{Law}$
The $\text{voltage}$ across a $\text{resistor}$ is $\text{directly}$ $\text{proportional}$ to the $\text{current}$ flowing through it.
$$\text{V} = \text{IR}$$$\text{Electric}$ $\text{Power}$ ($\text{P}$)
The $\text{rate}$ at which $\text{energy}$ is $\text{consumed}$. $\text{Units}$: $\text{Watt}$ ($\text{W}$ or $\text{J}/\text{s}$).
$$\text{P} = \text{IV}$$Magnetism $\text{and}$ $\text{Electromagnetism}$ 🧲
$\text{Magnetism}$ is produced by $\text{moving}$ $\text{electric}$ $\text{charges}$. This link is called **$\text{Electromagnetism}$**.
$\text{Magnetic}$ $\text{Fields}$
An area around a $\text{magnet}$ or a $\text{current}$-$\text{carrying}$ $\text{wire}$ where $\text{magnetic}$ $\text{force}$ can be detected.
$\text{Electromagnets}$
A $\text{temporary}$ $\text{magnet}$ created when $\text{current}$ flows through a $\text{coil}$ of $\text{wire}$.
$\text{Electromagnetic}$ $\text{Induction}$
The production of $\text{voltage}$ across a $\text{conductor}$ when it is exposed to a $\text{changing}$ $\text{magnetic}$ $\text{field}$ (the principle behind $\text{generators}$).
Interactive $\text{Ohm's}$ $\text{Law}$ $\text{Calculation}$ 🧮
Use $\text{Ohm's}$ $\text{Law}$ ($\text{V} = \text{IR}$) to calculate the $\text{current}$ in a simple circuit.
Problem:
A simple $\text{circuit}$ has a $\text{voltage}$ of $\mathbf{12 \text{ V}}$ and a total $\text{resistance}$ of $\mathbf{4.0 \text{ } \Omega}$. What is the $\text{current}$ ($\text{I}$) flowing through the circuit?
$$\text{Calculation}: \text{I} = \frac{\text{V}}{\text{R}} = \frac{12 \text{ V}}{4.0 \text{ } \Omega} = ? \text{ A}$$
⚡ $\text{Concept}$ $\text{Classification}$ $\text{Check}$!
Identify whether the quantity is $\text{Voltage}$ ($\text{V}$), $\text{Current}$ ($\text{I}$), or $\text{Resistance}$ ($\text{R}$) in the context of a circuit.
Reset Your Score
If you want to play again, you can reset your score here.