Grade 11: Electricity & Magnetism ⚡️🧲

Interactive Lesson • $\text{Charge}$ • $\text{Ohm's}$ $\text{Law}$ • $\text{Power}$ • $\text{Electromagnetism}$

$\text{Electric}$ $\text{Charge}$ $\text{and}$ $\text{Current}$ 🔋

  $\text{Electricity}$ is the study of $\text{electric}$ $\text{charge}$ ($q$) and its $\text{movement}$.

 
   

$\text{Charge}$ ($q$)

   

A $\text{fundamental}$ $\text{property}$ of matter. $\text{Units}$: $\text{Coulomb}$ ($\text{C}$).

   

Like $\text{charges}$ $\text{repel}$, opposite $\text{charges}$ $\text{attract}$.

 
 
   

$\text{Voltage}$ ($\text{V}$)

   

$\text{Electric}$ $\text{Potential}$ $\text{Difference}$. The $\text{energy}$ per $\text{unit}$ $\text{charge}$. $\text{Units}$: $\text{Volt}$ ($\text{V}$ or $\text{J}/\text{C}$).

 
 
   

$\text{Current}$ ($\text{I}$)

   

The $\text{rate}$ of $\text{flow}$ of $\text{charge}$. $\text{Units}$: $\text{Ampere}$ ($\text{A}$).

    $$\text{I} = \frac{q}{t}$$  
 
Score: 0
 
Streak: 0

Circuits: $\text{Ohm's}$ $\text{Law}$ $\text{and}$ $\text{Power}$ 🔌

  **$\text{Ohm's}$ $\text{Law}$** describes the relationship between $\text{Voltage}$ ($\text{V}$), $\text{Current}$ ($\text{I}$), and $\text{Resistance}$ ($\text{R}$).

 
   

$\text{Resistance}$ ($\text{R}$)

   

The $\text{opposition}$ to the $\text{flow}$ of $\text{charge}$. $\text{Units}$: $\text{Ohm}$ ($\Omega$).

 
 
   

$\text{Ohm's}$ $\text{Law}$

   

The $\text{voltage}$ across a $\text{resistor}$ is $\text{directly}$ $\text{proportional}$ to the $\text{current}$ flowing through it.

    $$\text{V} = \text{IR}$$  
 
   

$\text{Electric}$ $\text{Power}$ ($\text{P}$)

   

The $\text{rate}$ at which $\text{energy}$ is $\text{consumed}$. $\text{Units}$: $\text{Watt}$ ($\text{W}$ or $\text{J}/\text{s}$).

    $$\text{P} = \text{IV}$$  

Magnetism $\text{and}$ $\text{Electromagnetism}$ 🧲

  $\text{Magnetism}$ is produced by $\text{moving}$ $\text{electric}$ $\text{charges}$. This link is called **$\text{Electromagnetism}$**.

 
   

$\text{Magnetic}$ $\text{Fields}$

   

An area around a $\text{magnet}$ or a $\text{current}$-$\text{carrying}$ $\text{wire}$ where $\text{magnetic}$ $\text{force}$ can be detected.

 
 
   

$\text{Electromagnets}$

   

A $\text{temporary}$ $\text{magnet}$ created when $\text{current}$ flows through a $\text{coil}$ of $\text{wire}$.

 
 
   

$\text{Electromagnetic}$ $\text{Induction}$

   

The production of $\text{voltage}$ across a $\text{conductor}$ when it is exposed to a $\text{changing}$ $\text{magnetic}$ $\text{field}$ (the principle behind $\text{generators}$).

 

Interactive $\text{Ohm's}$ $\text{Law}$ $\text{Calculation}$ 🧮

Use $\text{Ohm's}$ $\text{Law}$ ($\text{V} = \text{IR}$) to calculate the $\text{current}$ in a simple circuit.

   

Problem:

   

A simple $\text{circuit}$ has a $\text{voltage}$ of $\mathbf{12 \text{ V}}$ and a total $\text{resistance}$ of $\mathbf{4.0 \text{ } \Omega}$. What is the $\text{current}$ ($\text{I}$) flowing through the circuit?

   

$$\text{Calculation}: \text{I} = \frac{\text{V}}{\text{R}} = \frac{12 \text{ V}}{4.0 \text{ } \Omega} = ? \text{ A}$$

   
                $\text{A}$            
   

⚡ $\text{Concept}$ $\text{Classification}$ $\text{Check}$!

Identify whether the quantity is $\text{Voltage}$ ($\text{V}$), $\text{Current}$ ($\text{I}$), or $\text{Resistance}$ ($\text{R}$) in the context of a circuit.

 
The $\text{opposition}$ to the $\text{flow}$ of $\text{charge}$ in a $\text{wire}$.
 
     
 
 

Reset Your Score

If you want to play again, you can reset your score here.