10th Grade: Stoichiometry ⚖️🧪

Interactive Lesson • $\text{Mole}$ $\text{Concept}$ • $\text{Molar}$ $\text{Ratios}$ • $\text{Conversion}$ $\text{Factors}$

What is $\text{Stoichiometry}$? 📏

  **$\text{Stoichiometry}$** (stoy-kee-AHM-uh-tree) is the calculation of $\text{reactants}$ and $\text{products}$ in a chemical $\text{reaction}$. It's like using a recipe to predict exactly how much of each ingredient you need and how much final product you'll make. The key is to use the **$\text{Mole}$ $\text{Concept}$** and a **$\text{Balanced}$ $\text{Equation}$**.

 
Score: 0
 
Streak: 0

The $\text{Mole}$ and $\text{Molar}$ $\text{Mass}$ ⚖️

 
   

The $\text{Mole}$ ($\text{mol}$)

   

The SI unit for the amount of substance. It's a counting unit, like a dozen.

 
 
   

$\text{Avogadro}$'s $\text{Number}$ ($\text{N}_A$)

   

One $\text{mole}$ of any substance contains $6.02 \times 10^{23}$ particles ($\text{atoms}$, $\text{molecules}$, etc.).

 
 
   

$\text{Molar}$ $\text{Mass}$ ($\text{MM}$)

   

The mass in $\text{grams}$ of one $\text{mole}$ of a substance. It is numerically equal to the $\text{atomic}$ $\text{mass}$ (or $\text{molecular}$ $\text{mass}$) on the $\text{Periodic}$ $\text{Table}$, measured in $\text{g}/\text{mol}$.

 
    $$\text{Number} \text{ of} \text{ Moles} = \frac{\text{Given} \text{ Mass} \text{ (grams)}}{\text{Molar} \text{ Mass} \text{ (g}/\text{mol})}$$

The $\text{Mole}$ $\text{Ratio}$ ➗

The coefficients (the large numbers in front of the formulas) in a **$\text{balanced}$ $\text{chemical}$ $\text{equation}$** represent the $\text{mole}$ $\text{ratio}$ between the $\text{reactants}$ and $\text{products}$. This ratio is the $\text{conversion}$ $\text{factor}$ used in $\text{Stoichiometry}$.

   

Example $\text{Reaction}$: $\text{The}$ $\text{Haber}$ $\text{Process}$

    $$\text{N}_{2} (g) + 3\text{H}_{2} (g) \longrightarrow 2\text{NH}_{3} (g)$$    

$\text{Mole}$ $\text{Ratio}$: 1 $\text{mol}$ $\text{N}_2$ : 3 $\text{mol}$ $\text{H}_2$ : 2 $\text{mol}$ $\text{NH}_3$

To convert moles of $\text{H}_2$ to moles of $\text{NH}_3$, you would use the conversion factor: $\frac{2 \text{ mol } \text{NH}_3}{3 \text{ mol } \text{H}_2}$

Interactive $\text{Stoichiometry}$ $\text{Practice}$ (Mole-to-Mole) ❓

Using the $\text{Haber}$ $\text{Process}$ equation from above ($\text{N}_{2} + 3\text{H}_{2} \longrightarrow 2\text{NH}_{3}$), calculate the moles of $\text{NH}_3$ produced.

   

Problem:

   

If you start with $5.0$ $\text{moles}$ of $\text{N}_2$, how many $\text{moles}$ of $\text{NH}_3$ can be produced?

   

$$\text{Calculation}: 5.0 \text{ mol } \text{N}_2 \times \frac{\text{Coefficient of } \text{NH}_3}{\text{Coefficient of } \text{N}_2} = ? \text{ mol } \text{NH}_3$$

   
                           
   

⚡ $\text{Mole}$ $\text{Concept}$ $\text{Check}$!

Click the correct value for each $\text{Stoichiometry}$ term.

 
Time: 0
 
Correct: 0
 
What $\text{value}$ is $\text{Molar}$ $\text{Mass}$ numerically equal to?
 
     
 
 

Reset Your Score

If you want to play again, you can reset your score here.