The $\text{Kinetic}$ $\text{Molecular}$ $\text{Theory}$ ($\text{KMT}$) 💨
$\text{Gases}$ are the most energetic state of matter. The **$\text{Kinetic}$ $\text{Molecular}$ $\text{Theory}$** describes the behavior of an $\text{ideal}$ $\text{gas}$ based on three main assumptions:
1. $\text{Particle}$ $\text{Motion}$
Gas particles are in constant, random, and rapid motion.
2. $\text{Volume}$ $\text{of}$ $\text{Particles}$
The volume of the particles themselves is negligible (almost zero) compared to the volume of the container.
3. $\text{Collisions}$ $\text{and}$ $\text{Forces}$
Collisions are perfectly $\text{elastic}$ (no energy loss), and there are no attractive or repulsive forces between particles.
The $\text{Four}$ $\text{Gas}$ $\text{Variables}$ $\text{P}$, $\text{V}$, $\text{T}$, $\text{n}$ 📊
The behavior of gases is defined by four measurable variables.
$\text{Pressure}$ ($\text{P}$)
Force exerted by gas particles colliding with the container walls. $\text{Units}$: $\text{atm}$, $\text{kPa}$, $\text{mmHg}$.
$\text{Volume}$ ($\text{V}$)
The space occupied by the gas (the container's volume). $\text{Units}$: $\text{L}$, $\text{mL}$.
$\text{Temperature}$ ($\text{T}$)
The measure of the $\text{average}$ $\text{kinetic}$ $\text{energy}$ of the particles. $\text{Must}$ $\text{be}$ $\text{in}$ $\text{Kelvin}$ ($\text{K}$) for $\text{Gas}$ $\text{Laws}$.
$\text{Amount}$ ($\text{n}$)
The number of gas particles. $\text{Units}$: $\text{moles}$ ($\text{mol}$).
The $\text{Major}$ $\text{Gas}$ $\text{Laws}$ 🧪
These laws describe the relationship between two variables when the other variables are held $\text{constant}$.
$\text{Boyle's}$ $\text{Law}$ ($\text{P}$ vs. $\text{V}$)
$\text{Relationship}$: $\text{Inverse}$. As $\text{Pressure}$ $\text{increases}$, $\text{Volume}$ $\text{decreases}$.
$\text{Equation}$: $$P_1V_1 = P_2V_2$$ ($\text{T}$ and $\text{n}$ are constant)
$\text{Charles'}$ $\text{Law}$ ($\text{V}$ vs. $\text{T}$)
$\text{Relationship}$: $\text{Direct}$. As $\text{Temperature}$ $\text{increases}$, $\text{Volume}$ $\text{increases}$.
$\text{Equation}$: $$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$ ($\text{P}$ and $\text{n}$ are constant)
$\text{Gay}$-$\text{Lussac's}$ $\text{Law}$ ($\text{P}$ vs. $\text{T}$)
$\text{Relationship}$: $\text{Direct}$. As $\text{Temperature}$ $\text{increases}$, $\text{Pressure}$ $\text{increases}$.
$\text{Equation}$: $$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$ ($\text{V}$ and $\text{n}$ are constant)
⚡ $\text{Gas}$ $\text{Law}$ $\text{Concept}$ $\text{Check}$!
Identify the correct relationship or law for the scenario described.
Reset Your Score
If you want to play again, you can reset your score here.