10th Grade: Gases & Their Laws 🎈🌡️

Interactive Lesson • $\text{Kinetic}$ $\text{Theory}$ • $\text{Boyle's}$ $\text{Law}$ • $\text{Charles'}$ $\text{Law}$

The $\text{Kinetic}$ $\text{Molecular}$ $\text{Theory}$ ($\text{KMT}$) 💨

  $\text{Gases}$ are the most energetic state of matter. The **$\text{Kinetic}$ $\text{Molecular}$ $\text{Theory}$** describes the behavior of an $\text{ideal}$ $\text{gas}$ based on three main assumptions:

 
   

1. $\text{Particle}$ $\text{Motion}$

   

Gas particles are in constant, random, and rapid motion.

 
 
   

2. $\text{Volume}$ $\text{of}$ $\text{Particles}$

   

The volume of the particles themselves is negligible (almost zero) compared to the volume of the container.

 
 
   

3. $\text{Collisions}$ $\text{and}$ $\text{Forces}$

   

Collisions are perfectly $\text{elastic}$ (no energy loss), and there are no attractive or repulsive forces between particles.

 
 
Score: 0
 
Streak: 0

The $\text{Four}$ $\text{Gas}$ $\text{Variables}$ $\text{P}$, $\text{V}$, $\text{T}$, $\text{n}$ 📊

The behavior of gases is defined by four measurable variables.

 
   

$\text{Pressure}$ ($\text{P}$)

   

Force exerted by gas particles colliding with the container walls. $\text{Units}$: $\text{atm}$, $\text{kPa}$, $\text{mmHg}$.

 
 
   

$\text{Volume}$ ($\text{V}$)

   

The space occupied by the gas (the container's volume). $\text{Units}$: $\text{L}$, $\text{mL}$.

 
 
   

$\text{Temperature}$ ($\text{T}$)

   

The measure of the $\text{average}$ $\text{kinetic}$ $\text{energy}$ of the particles. $\text{Must}$ $\text{be}$ $\text{in}$ $\text{Kelvin}$ ($\text{K}$) for $\text{Gas}$ $\text{Laws}$.

 
 
   

$\text{Amount}$ ($\text{n}$)

   

The number of gas particles. $\text{Units}$: $\text{moles}$ ($\text{mol}$).

 

The $\text{Major}$ $\text{Gas}$ $\text{Laws}$ 🧪

These laws describe the relationship between two variables when the other variables are held $\text{constant}$.

 
   

$\text{Boyle's}$ $\text{Law}$ ($\text{P}$ vs. $\text{V}$)

   

$\text{Relationship}$: $\text{Inverse}$. As $\text{Pressure}$ $\text{increases}$, $\text{Volume}$ $\text{decreases}$.

   

$\text{Equation}$: $$P_1V_1 = P_2V_2$$ ($\text{T}$ and $\text{n}$ are constant)

 
 
   

$\text{Charles'}$ $\text{Law}$ ($\text{V}$ vs. $\text{T}$)

   

$\text{Relationship}$: $\text{Direct}$. As $\text{Temperature}$ $\text{increases}$, $\text{Volume}$ $\text{increases}$.

   

$\text{Equation}$: $$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$ ($\text{P}$ and $\text{n}$ are constant)

 
 
   

$\text{Gay}$-$\text{Lussac's}$ $\text{Law}$ ($\text{P}$ vs. $\text{T}$)

   

$\text{Relationship}$: $\text{Direct}$. As $\text{Temperature}$ $\text{increases}$, $\text{Pressure}$ $\text{increases}$.

   

$\text{Equation}$: $$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$ ($\text{V}$ and $\text{n}$ are constant)

 

⚡ $\text{Gas}$ $\text{Law}$ $\text{Concept}$ $\text{Check}$!

Identify the correct relationship or law for the scenario described.

 
Time: 0
 
Correct: 0
 
If you $\text{decrease}$ the $\text{volume}$ of a $\text{container}$, what happens to the $\text{pressure}$ (T and n are constant)?
 
     
 
 

Reset Your Score

If you want to play again, you can reset your score here.